If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-78125X-156250=0
a = 1; b = -78125; c = -156250;
Δ = b2-4ac
Δ = -781252-4·1·(-156250)
Δ = 6104140625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6104140625}=\sqrt{15625*390665}=\sqrt{15625}*\sqrt{390665}=125\sqrt{390665}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78125)-125\sqrt{390665}}{2*1}=\frac{78125-125\sqrt{390665}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78125)+125\sqrt{390665}}{2*1}=\frac{78125+125\sqrt{390665}}{2} $
| 9k+2k-3k-8k+3k=15 | | 2w+8=3w-4 | | 0n-1+2n=1 | | -10m+-3m-9m+-15=7 | | 0.5x+1.5=-2x+20 | | -10(1+6m)+m=-9-10 | | 4r+2r-3r=9 | | 14k-5k-5k+3k=14 | | x^2+3x+5=75 | | O.5(4x-6)=21 | | 8-9;f=(-3) | | -15b+-3b-b=-19 | | 10^7+9y=134000 | | 27^(2-5x)=0 | | -4y-y+11y-7y=-18 | | 2/3n-2/3=n/5+4/3 | | 4x-2=+4x | | 936=2x-4•x+6 | | 50=2.5s | | 1+0n-3n=-5 | | ((X^2)/x+2)-78125=0 | | 11x^2+5=62 | | 3/4*f=1/4 | | 118+118+x=180 | | (6+3y)/(2)=144 | | 0n-3-n=-6 | | 20p-18p=2 | | 12=1/4y. | | c/1/2=2 | | 4n=880.4. | | X/y=65 | | 9g+3=57 |